layout2

Surface Area of a Solid

The sum of the areas of all the faces of a solid.
The following distinction is made between the lateral area and the total area of a solid:
  • Lateral area of a solid: The sum of the areas of the lateral faces of some solids.
  • Total area of a solid: The sum of the areas of all the faces of a solid, including the bases, if applicable.

Formulas

Solids Lateral area [latex]A_l[/latex] Total area [latex]A_t[/latex] Nomenclature
Cube [latex]A_l=4c^2[/latex] [latex]A_t=6c^2[/latex] c: length of an edge of the cube
Rectangular prism  [latex]A_l=2×(ac + bc)[/latex]  [latex]A_t=2×(ab+ac+bc)[/latex] a: length b: width c: height
Right circular cylinder [latex]A_l=2\pi rh[/latex] [latex]A_t=2\pi r^2+2\pi rh[/latex] r: radius h: height
Regular pyramid [latex]A_l=\frac{nca}{2}[/latex] [latex]A_t=A_b+\frac{nca}{2}[/latex] Ab: area of the base c: side length of the base n: number of sides of the base a: slant height
Right circular cone [latex]A_l=\frac{\pi da}{2}[/latex] ou [latex]A_l=\pi ra[/latex] [latex]A_t=\pi r^2+\pi ra[/latex] a: slant height r: radius h: height where a² = h² + r²
Sphere  [latex]A_l=4\pi r^2[/latex]  [latex]A_t=4\pi r^2[/latex]  r: radius of the sphere

Netmath, the educational platform where students have fun learning!

Try our activities