The sum of the areas of all the faces of a
solid.
The following distinction is made between the
lateral area and the
total area of a solid:
- Lateral area of a solid:
The sum of the areas of the lateral faces of some solids.
- Total area of a solid:
The sum of the areas of all the faces of a solid, including the bases, if applicable.
Formulas
| Solids |
Lateral area
[latex]A_l[/latex] |
Total area
[latex]A_t[/latex] |
Nomenclature |
Cube
 |
[latex]A_l=4c^2[/latex] |
[latex]A_t=6c^2[/latex] |
c: length of an edge of the cube |
Rectangular prism
 |
[latex]A_l=2×(ac + bc)[/latex] |
[latex]A_t=2×(ab+ac+bc)[/latex] |
a: length
b: width
c: height |
Right circular cylinder
 |
[latex]A_l=2\pi rh[/latex] |
[latex]A_t=2\pi r^2+2\pi
rh[/latex] |
r: radius
h: height |
Regular pyramid
 |
[latex]A_l=\frac{nca}{2}[/latex] |
[latex]A_t=A_b+\frac{nca}{2}[/latex] |
Ab: area of the base
c: side length of the base
n: number of sides of the base
a: slant height |
Right circular cone
 |
[latex]A_l=\frac{\pi da}{2}[/latex]
ou
[latex]A_l=\pi ra[/latex] |
[latex]A_t=\pi r^2+\pi ra[/latex] |
a: slant height
r: radius
h: height
where a² = h² + r² |
Sphere
 |
[latex]A_l=4\pi r^2[/latex] |
[latex]A_t=4\pi r^2[/latex] |
r: radius of the sphere |