Vectors for which the scalar product is zero.
The vectors \(\overrightarrow{u}\) and \(\overrightarrow{v}\) are orthogonal if: \(\overrightarrow{u}\) × \(\overrightarrow{v}\) = 0.
Therefore, we can write: \(\overrightarrow{u}\) ⊥ \(\overrightarrow{v}\).
Example
\(\parallel \overrightarrow{u}\parallel\) = 1 and \(\parallel \overrightarrow{v}\parallel \) = 2
\(\parallel \overrightarrow{u}\) × \(\overrightarrow{v}\parallel \) = \(\parallel \overrightarrow{u}\parallel \) × \(\parallel \overrightarrow{v}\parallel \) × cos(θ) = 1 × 2 × cos(90°) = 2 × cos(90°) = 0.