Surface Area of a Solid

Surface Area of a Solid

The sum of the areas of all the faces of a solid.

The following distinction is made between the lateral area and the total area of a solid:

  • Lateral area of a solid:
    The sum of the areas of the lateral faces of some solids.
  • Total area of a solid:
    The sum of the areas of all the faces of a solid, including the bases, if applicable.

Formulas

Solids Lateral area
\(A_l\)
Total area
\(A_t\)
Nomenclature
Cube
\(A_l=4c^2\) \(A_t=6c^2\) c: length of an edge of the cube
Rectangular prism
 \(A_l=2×(ac + bc)\)  \(A_t=2×(ab+ac+bc)\) a: length
b: width
c: height
Right circular cylinder
\(A_l=2\pi rh\) \(A_t=2\pi r^2+2\pi
rh\)
r: radius
h: height
Regular pyramid
\(A_l=\frac{nca}{2}\) \(A_t=A_b+\frac{nca}{2}\) Ab: area of the base
c: side length of the base
n: number of sides of the base
a: slant height
Right circular cone

\(A_l=\frac{\pi da}{2}\)
ou
\(A_l=\pi ra\)
\(A_t=\pi r^2+\pi ra\) a: slant height
r: radius
h: height
where a² = h² + r²
Sphere

 \(A_l=4\pi r^2\)  \(A_t=4\pi r^2\)  r: radius of the sphere

Try Buzzmath activities for free

and see how the platform can help you.