Algebraic equation of the form \(x^{2}=y^{2}+z^{2}\).

The general solution of this equation is:

- \(x=k \left (m^{2} + n^{2} \right )\)
- \(y=k\left ( m^{2}-n^{2} \right )\)
- \(z=2kmn\)

where *k*, *m* and *n* are integers.

### Example

If *k* = 2, *m* = 4 and *n* = 3, then : *x* = 50, *y* = 14 and *z* = 48.

Therefore : \(50^{2}=14^{2}+48^{2}\)

And : 2500 = 196 + 2304