Vectors

Multiplication of a Vector by a Scalar

Given a non-zero scalar k and a vector [latex]\overrightarrow{v}[/latex], the product k[latex]\overrightarrow{v}[/latex] is the vector in which:
  • The length is the product of the length of [latex]\overrightarrow{v}[/latex] by the absolute value of k;
  • The direction is that of [latex]\overrightarrow{v}[/latex];
  • The sense is that of [latex]\overrightarrow{v}[/latex] if k > 0 or its opposite if k < 0.
  • If k = 0 or if [latex]\overrightarrow{v}[/latex] = 0, then [latex]k\overrightarrow{v}[/latex] = 0.
  • When writing the multiplication, and the result, the scalar always precedes the vector: 2 × [latex]\overrightarrow{v}[/latex] = 2[latex]\overrightarrow{v}[/latex].
  • If [latex]\overrightarrow{v} = (a, b)[/latex], then [latex]k\overrightarrow{v} = k(a, b) = (ka, kb)[/latex].

Properties

  • If [latex]\overrightarrow{v} = \overrightarrow{0}[/latex] with [latex]k = 0[/latex], then [latex]k\overrightarrow{v} = \overrightarrow{0}[/latex];
  • If [latex]\overrightarrow{v} ≠ \overrightarrow{0}[/latex] and [latex]k > 0[/latex], then [latex]\overrightarrow{v}[/latex] and [latex]k\overrightarrow{v}[/latex] have the same direction and the same sense and [latex]\|k\overrightarrow{v}\|[/latex] = [latex]k · \|\overrightarrow{v}\|[/latex], where [latex]\|\overrightarrow{v}\|[/latex] represents the norm of the vector [latex]\overrightarrow{v}[/latex];
  • If [latex]\overrightarrow{v} ≠ \overrightarrow{0}[/latex] and [latex]k < 0[/latex], then [latex]\overrightarrow{v}[/latex] and [latex]k\overrightarrow{v}[/latex] have the same direction, in opposite senses and [latex]\|k\overrightarrow{v}\|[/latex] = [latex]−k · \|\overrightarrow{v}\|[/latex];
  • The vectors [latex]\overrightarrow{u}[/latex] and [latex]\overrightarrow{v}[/latex] are said to be collinear if there is a non-zero real number [latex]k[/latex] for which [latex]\overrightarrow{v} = k\overrightarrow{u}[/latex].

Netmath, the educational platform where students have fun learning!

Try our activities