About

Discover the Authors

Paul Patenaude

Paul Patenaude has a bachelor’s degree in arts from the Université de Montréal, a bachelor’s degree in pedagogy, and a bachelor’s degree in mathematics education, followed by more than 35 years of teaching and education consulting in math and computer sciences at the primary and secondary school levels in Quebec and abroad. He is the author or co-author of several books about teaching math including this glossary of terms for children ages 5 to 17. He has been refining this glossary for more than 30 years. He was awarded the Prix d’excellence by the GRMS (the Claude Janvier prize) in 1997 and a prize for the best article in the GRMS journal, Envol, (Euler prize) in 1992.

Pierre Mathieu

Pierre Mathieu has a bachelor’s degree in arts from the Université de Montréal, a bachelor’s degree in sciences (2 years), a bachelor’s degree in pedagogy, a teaching diploma and a bachelor’s in administration. He also has 35 years of solid experience in teaching math, including 30 years as a education consultant. He is the author or co-author of several books about teaching math including two mathematics glossaries published by Éditions du Triangle d’Or. Pierre has been a resource person on several occasions when implementing new curriculums in Quebec and writing curriculums for at the Ministère de l’éducation. He worked with the group PC², which produced teaching and evaluation materials recognized across Quebec.

The team at Scolab did its best to make using this glossary as enjoyable as possible by creating this site.


Notes and References

References

  • Baruk, S., Dictionnaire de mathématiques élémentaires, Éditions du Seuil, 1992
  • Bouvier, A. and George, M. Dictionnaire des mathématiques, PUF, first edition, 1979
  • De Champlain, D., Mathieu, P., Patenaude, P. and Tessier, H., Lexique mathématique, enseignement secondaire, 2nd edition, 1996, Les Éditions du Triangle d’Or, distribution by Modulo Éditeur, telephone: (514) 738-9818, toll-free: 1-888-738-9818.
  • Gellert W. et al., Petite encyclopédie des mathématiques, French edition, 1980,
    translated from German by J. L. Lions, Collège de France, Paris, Éditions K. Pagoulatos, Paris – Londres – Athènes; Original title: Klein Encyclopädie der Mathematik
  • Hanson, Diane, Le lexique élémentaire / Le lexique secondaire, Saskatchewan Education
  • Ifrah, Georges, Histoire universelle des chiffres, collection Bouquins, 1994, in 2 volumes. Vol. 1: 1042 pages, Vol. 2: 1010 pages
  • Jean, Charles E., RécréomathDictionnaire de mathématiques récréatives, available exclusively on the Internet.
  • Schwartzman, Steven, The Words of Mathematics, An Etymological Dictionary of Mathematical Terms Used in English, The Mathematical Association of America, 1994
  • Karush, William, PhD, Dictionary of Mathematics, Webster’s New World, 1989
  • Graphisme, notations et symboles utilisés en mathématique au secondaire, Gouvernement du Québec, Ministère de l’Éducation, 1997

Notes

As part of a mathematical theory or a book about a mathematical concept, it is common for authors to use a system of definitions and properties that is unique to them. This way, they can guarantee the internal consistency of their system.

Revising systems of definitions has often contributed to advancing mathematics. Because of this, it’s possible to find definitions that are different or diverge from the ones offered in this glossary. The definitions provided here are the ones that we believe are most unanimously agreed upon in the field of teaching math to students between the ages of 5 and 17.

In order not to overload this reference tool, we have not indicated all of the meanings that are derived from them or accepted as equivalent or not. For more information, we encourage you to consult the references indicated above.

Many math terms have Greek and Latin roots (hexagon, diameter, cryptarithm, isomorphism, etc.).  They also come from everyday vocabulary (reflection, rotation, application, element, set, etc.) and foreign languages (algebra, arithmetic, algorithm, etc.). Once a term is chosen to describe a mathematical concept, it must be used with precision to avoid creating confusion: avoid mixing up number and digit, or function, equation and graph of the function, for example. Without embarking upon a crusade about the correct vocabulary to use in mathematics, it’s important to take care not to slip too easily into language shortcuts that will only lead to confusion in the long term.


Netmath, the educational platform where students have fun learning!

Try our activities